A Video Game Puzzle Hunt Reaps Real-World Rewards!

We’ve written about some pretty amazing and elaborate puzzle hunts here in the past. There was the Gravity Falls cipher hunt that led to an actual statue of the show’s villain Bill Cipher in the woods of Reedsport, Oregon. (And a mayoral position for the first person to find him and shake his hand!) There was the puzzle-turned-global-scavenger hunt from Trials Evolution that won’t be completed until 2113 at the base of the Eiffel Tower.

And now, a massive crowdsourcing effort has cracked another masterpiece, a puzzle hidden in an expansion pack for the video game Destiny 2. Destiny 2 is an online first-person-shooter loaded with sci-fi trappings and in-depth storytelling where players explore a shared environment while engaging in their own personal plot and adventures.

The most recent expansion to the game, Warmind, was released last week, and players noticed an elaborate symbol on a wall in the bunker of Rasputin, a sentient robot. The symbol appeared to be a lock surrounded by keys and curious symbols.

This Kotaku post went live on Friday, three days after the Warmind release, revealing the incredible online effort already in motion to unravel the secrets of the Rasputin puzzle. The subreddit r/raidsecrets was ground zero for the puzzle-solving efforts, and players compiled their theories and discoveries there.

Players quickly determined that each of the keys had a symbol that linked back to other imagery from the game, and by following those breadcrumbs, they had a chance to crack the cipher.

The first symbol was found in several places, each time with a set of digits and a bar in a particular position. Solvers theorized that these symbols represented the word “reverse.”

The second symbol appeared beside a Braille grid, leading hunters to crates with Braille lettering on them: OEAARRTFWTH. This anagrams to The Art of War, Sun Tzu’s famous tome. In this case, The Art of War was used as the source material for an Ottendorf Cipher. (That particular cipher was made famous by Nicolas Cage’s National Treasure movies.)

This type of cipher uses numbers in groups of three, and these numbers correspond to positions of letters in a book. Most often the numbers refer to Line, Word, and Letter. Decoding the number-combinations in the image above led to the answer “Destroy all second A and B. Then destroy all third C and R.”

These two clues were assumed to be instructions for what to do with the encoded ciphertext others had discovered in the game:

This encrypted message was the heart of the puzzle. But there was more to uncover first.

As it turns out, the last three keys in the image represented different words to apply to the ciphertext in order to properly decode it.

The fourth symbol was found near a Morse Code sequence that spelled out “NTEHNMLNEEGIT,” an anagram for “Enlightenment.”

The fifth symbol pointed toward a monitor with some peculiar code on it. It turns out the code was actually Jianpu, an ancient form of Chinese notation for writing music. When translated into actual music, a player identified the piece as an excerpt from Tchaikovsky’s Swan Lake.

One intrepid codebreaker then tried to decrypt the ciphertext given the clues everyone had assembled thus far.

He reversed the ciphertext, according to the instruction of the first key. He then removed every other A and every other B from the text, then every third C and every third R, according to the instructions of the second key.

Then, employing a Vigenere cipher, he used the two key words he had — “enlightenment” and “swan lake” — to begin decrypting the text. He managed to decrypt the entire text, but more incredibly, he also reverse engineered the missing third key word — “mechanized” — while doing so.

And what was the final message, after all this?

thank you for taking the time to piece together this message, friend. the time of our final conflict is drawing closer and you and ana have an important role to play in the events to come. so watch over her, guardian. i would have no life without ana or the exoprogram. i regret that we have become strangers, but we each have a path that we must walk. and, ironically, there never seems to be enough time. tell her, rasputin’s first attempt was in the right location, but the wrong moment. look here: 43.549573, -73.544868 – e

As you might suspect, those numbers at the end are GPS coordinates, which correspond to Sleeping Beauty Mountain in upstate New York. (The company that developed Warmind, Vicarious Visions, is based in upstate New York.)

A small treasure trove of prizes awaited the brave soul who trekked out to Sleeping Beauty Mountain on Saturday morning. The centerpiece was a giant spear, a replica of a weapon from the game known as the Valkyrie.

From the Kotaku article following up on the puzzle’s resolution:

There was also a box of gold coins (along with instructions asking the finder to only take one), a set of notes, and a journal for recording visitors. The note, from Warmind design lead Rob Gallerani, encouraged the finder(s) to share photos of this discovery and told them that there are only three spears like that in existence — one at Vicarious Visions, one at Bungie, and this.

The spear, shown above (alongside the visiting team from Vicarious Visions) now resides at a comic shop called The Freakopolis Geekery.

As for the gold coins and the geocache Vicarious Visions had set up for others who make the trip, unfortunately, park rangers removed it because the designers didn’t get a permit. The coins have been returned to Vicarious Visions, who are currently reaching out to all the folks at r/raidsecrets who contributed to the solution of the puzzle, hoping to get them the coins they so richly deserve.

And, as if all that wasn’t amazing enough, it turns out… this might not be the end of the adventure.

Because a sharp-eyed observer noticed some text embossed on the upper portion of the replica Valkyrie spear:

At the moment, no one knows what the letters mean. But if I had to wager, I’d say the master puzzle solvers at r/raidsecrets should keep digging. Who knows what they’ll find next?


Thanks for visiting PuzzleNation Blog today! Be sure to sign up for our newsletter to stay up-to-date on everything PuzzleNation!

You can also share your pictures with us on Instagram, friend us on Facebook, check us out on TwitterPinterest, and Tumblr, and explore the always-expanding library of PuzzleNation apps and games on our website!

Puzzle History: Codebreaking and the NSA, part 3

[Image courtesy of NSA’s official Twitter account.]

At the end of part 2 in our series, we left off during the early days of the NSA, as American cryptographers continued to labor under the shadow of the Black Friday change in Russian codes.

You may have noticed that part 2 got a little farther from puzzly topics than part 1, and there’s a reason for that. As the NSA evolved and grew, codebreaking was downplayed in favor of data acquisition. The reasons for this were twofold:

1. Context. You need to understand why given encrypted information is important in order to put it toward the best possible use. As Budiansky stated in part 1, “The top translators at Bletchley were intelligence officers first, who sifted myriad pieces to
assemble an insightful whole.”

2. Russian surveillance and bugging continued to grow more clever and sophisticated, pushing attention away from codebreaking. After all, what good is breaking codes or developing new ones if they can just steal unencrypted intel firsthand by monitoring
agents in the field?

Moving forward, the NSA would continue to pursue all manner of data mining, eventually leaving behind much of the codebreaking and analysis that originally formed the backbone of the organization. But that was in years to come. Cryptography was still a major player in NSA operations from the ’50s and onward.

[The progression of “secret” and “top secret” code words.
Image courtesy of NSA’s official Twitter account.]

In May 1956, NSA cryptanalytic veterans pushed a proposal titled “Recommendations for a Full-Scale Attack on the Russian High-Level Systems,” believing that specially designed computers from IBM could provide the key for cracking the impenetrable Russian cryptography wall. Some cryptographers believed that ever-increasing processor speeds would eventually outpace even sophisticated codes.

By 1960, the NSA had spent $100 million on computers and analytical tools.

The problem? The NSA was collecting so much information that their increasingly small team of cryptoanalysts couldn’t dream of processing even a tiny portion of it.

But the quest for data access would only grow more ambitious.

In the wake of Sputnik’s launch in October of 1957, US signals intelligence would go where no man had gone before. The satellite GRAB, launched alongside Transit II-A in June of 1960, was supposedly meant to study cosmic radiation. (GRAB stood for Galactic Radiation and Background.)

[Image courtesy of NSA’s official Twitter account.]

But it was actually intended to collect radar signals from two Soviet air-defense systems. This was the next step of ELINT, electronic intelligence work. (The younger brother of SIGINT.)

The NSA would later find a huge supporter in President Lyndon Johnson, as the president was heavily invested in SIGINT, ELINT, and any other INTs he could access. This did little to quell the intelligence-gathering rivalry growing between the CIA and NSA.

Of course, that’s not to say that the NSA ceased to do any worthwhile work in codebreaking. Far from it, actually.

During the Vietnam War, NSA analysts pored over North Vietnamese signals, trying to uncover how enemy pilots managed to scramble and respond so quickly to many of the US’s airstrikes conducted during Operation Rolling Thunder.

Careful analysis revealed an aberrant character (in Morse code) in messages that appeared in North Vietnamese transmissions before 90 percent of the Rolling Thunder airstrikes. By identifying when the enemy used that aberrant character, the analysts
were able to warn US pilots whether they were heading toward a prepared enemy or an unsuspecting one during a given sortie.

Other NSA teams worked to protect US communications by playing the role of an enemy analyst. They would try to break US message encryptions and see how much they could learn from intercepted US signals. Identifying flaws in their own procedures — as well as members of the military who were cutting corners when it came to secured communications — helped to make US communications more secure.

[Image courtesy of NSA.gov.]

In 1979, Jack Gurin, the NSA’s Chief of Language Research, wrote an article in the NSA’s in-house publication Cryptolog, entitled “Let’s Not Forget Our Cryptologic Mission.” He believed much of the work done at the agency, and many of the people
hired, had strayed from the organization’s core mission.

The continued push for data acquisition over codebreaking analysis in the NSA led to other organizations picking up the slack. The FBI used (and continues to use) codebreakers and forensic accountants when dealing with encrypted logs from criminal organizations covering up money laundering, embezzlement, and other illegal activities.

And groups outside the government also made impressive gains in the field of encryption, among them IBM’s Thomas J. Watson Research Center, the Center for International Security and Arms Control, and even graduate student programs at universities like MIT and Stanford.

For instance, cryptographer Whitfield Diffie developed the concept of the asymmetric cipher. Joichi Ito explains it well in Whiplash:

Unlike any previously known code, asymmetric ciphers do not require the sender and receiver to have the same key. Instead, the sender (Alice) gives her public key to Bob, and Bob uses it to encrypt a message to Alice. She decrypts it using her private key. It no longer matters if Eve (who’s eavesdropping on their conversation) also has Alice’s public key, because the only thing she’ll be able to do with it is encrypt a message that only Alice can read.

This would lead to a team at MIT developing RSA, a technique that implemented Diffie’s asymmetric cipher concept. (It’s worth noting that RSA encryption is still used to this day.)

[Image courtesy of Campus Safety Magazine.com.]

The last big sea change in encryption came when the government and military realized they no longer had a monopoly on codebreaking technology. Increased reliance and awareness of the importance of computer programming, greater access to computers with impressive processing power, and a groundswell of support for privacy from prying government eyes, led to dual arms races: encryption and acquisition.

And this brings us to the modern day. The revelations wrought by Edward Snowden’s leak of NSA information revealed the incredible depth of government data mining and acquistion, leading some pundits to claim that the NSA is “the only part of government that actually listens.”

Whatever your feelings on Snowden’s actions or government surveillance, there is no doubt that the National Security Agency has grown and changed a great deal since the days of cracking the ENIGMA code or working with the crew at Bletchley Park.

Where will American codebreaking go next? Who knows? Perhaps quantum computing will bring codes so complicated they’ll be impenetrable.

All I know is… it’s part of puzzle history.


I hope you enjoyed this multi-part series on the history of 20th-century codebreaking in America. If you’d like to learn more, you can check out some of the valuable sources I consulted while working on these posts:

Code Warriors: NSA’s Codebreakers and the Secret Intelligence War Against the Soviet Union by Stephen Budiansky

Whiplash: How to Survive Our Faster Future by Joichi Ito

The Secret Lives of Codebreakers by Sinclair McKay


Thanks for visiting PuzzleNation Blog today! Be sure to sign up for our newsletter to stay up-to-date on everything PuzzleNation!

You can also share your pictures with us on Instagram, friend us on Facebook, check us out on TwitterPinterest, and Tumblr, and explore the always-expanding library of PuzzleNation apps and games on our website!

Puzzle History: Codebreaking and the NSA, part 2

[Image courtesy of NSA’s official Twitter account.]

At the end of part 1 of our look at the history of the NSA and American codebreaking, we left off with the pivotal Black Friday event.

On November 1, 1948, all intel coming from monitored Soviet signals went quiet. All traffic on military, naval, and police radio links was replaced with dummy messages. It was such an unprecedented and alarming event that London and Washington briefly considered that it might’ve been the first indication of preparations for war.

According to Code Warriors author Stephen Budiansky:

The full extent of the disaster only became apparent the following spring when real traffic started reappearing on the radio nets, now employing greatly improved — and completely unbreakable — technical and security procedures. The keying errors or other mistakes that had allowed most of the Soviets’ machine-enciphered military traffic to be routinely read by US and British codebreakers for the last several years had been corrected, and the much more disciplined systems that now replaced them slammed the cryptanalytic door shut.

Even the one-time pads that had offered some hope to attentive American codebreakers were updated, eliminating the ability to sort messages by which organization they originated from.

Codemakers had suddenly outpaced codebreakers.

[The Kryptos sculpture outside CIA Headquarters. The NSA cracked
several of its codes before the CIA did. Image courtesy of Slate.com.]

The Office of Naval Intelligence wanted to take over from Signals Intelligence (SIGINT), demanding to see “everything” so they could do the job. They claimed SIGINT should limit their work to message translation, leaving interpretation to “the real experts.” This sort of territorial gamesmanship would continue to hamper government organizations for decades to come.

And that demand to see everything? That probably sounds familiar, in light of the revelations about government data collection and the PRISM program that were revealed in Edward Snowden’s leaks.

Black Friday was the start of all that, a shift from codecracking to the massive data collection and sifting operation that characterized the NSA for decades to come.

More amazingly, there was SO MUCH information collected during World War II that SIGINT was still poring over it all in 1949, decrypting what they could to reveal Soviet agents in the U.S. and England.

The fact that a high-ranking member of British Intelligence at the time, Kim Philby, was actually a Soviet double agent complicated things. After a decade under suspicion, Philby would flee to the Soviet Union in 1963, stunning many friends and colleagues who had believed in his innocence.

[The spy and defector, honored with a Soviet stamp.
Image courtesy of Britannica.com.]

Although the Russians had flummoxed SIGINT, other countries weren’t so lucky. The East German police continued to use ENIGMA codes as late as 1956. Many of the early successes in the Korean War were tied to important decryption and analysis work by SIGINT. Those successes slowed in July of 1951, when North Korea began mimicking Russia’s radio procedures, making it much harder to gain access to North Korean intel.

Finally, the chaotic scramble for control over signal-based data gathering and codebreaking between the government and the military resulted in the birth of the National Security Agency on November 4, 1952, by order of President Truman.

One of the first things the NSA did? Reclassify all sorts of material involving historical codebreaking, including books and papers dating back to the Civil War and even the American Revolution.

[The actual report that recommended the creation of the NSA.
Image courtesy of NSA’s official Twitter account.]

The creation of the NSA had finally, for a time at least, settled the issue of who was running the codebreaking and signals intelligence operation for the United States. And they were doing fine work refining the art of encryption, thanks to the work of minds like mathematician and cryptographer Claude Shannon.

One of Shannon’s insights was the inherent redundancy that is built into written language. Think of the rules of spelling, of syntax, of logical sentence progression. Those rules define the ways that letters are combined to form words (and those words form sentences, and those sentences form paragraphs, and so on).

The result? Well, if you know the end goal of the encoded string of characters is a functioning sentence in a given language, that helps narrow down the amount of possible information contained in that string. For instance, a pair of characters can’t be ANYTHING, because letter combinations like TD, ED, LY, OU, and ING are common, while combos like XR, QA, and BG are rare or impossible.

By programming codecracking computers to recognize some of these rules, analysts were developing the next generation of codebreakers.

Unfortunately, the Russian line was holding. The NSA’s failure to read much, if any, Soviet encrypted traffic since Black Friday was obviously becoming more than just a temporary setback.

Something fundamental had changed in the nature of the Russian cryptographic systems, and in the eyes of some scientific experts called in to assess the situation, the NSA had failed to keep up with the times.


I hope you’re enjoying this look at the early days of America’s 20th-century codebreaking efforts. Part 3 will continue next week, with the sea change from active codebreaking to data mining, plus Vietnam, the space race, and more!


Thanks for visiting PuzzleNation Blog today! Be sure to sign up for our newsletter to stay up-to-date on everything PuzzleNation!

You can also share your pictures with us on Instagram, friend us on Facebook, check us out on TwitterPinterest, and Tumblr, and explore the always-expanding library of PuzzleNation apps and games on our website!