Puzzles in Plain Sight: Secret Message in Hollywood Edition!

3847c

[Image courtesy of MathTutorDVD.]

I am fascinated by codebreaking, secret codes, and that whole subgenre of puzzle solving. Probably because I’m pretty bad at it.

Don’t get me wrong, I can crack your bog-standard cryptogram or alphanumeric message. I’m fairly good at identifying patterns and deciphering codes when it comes to simple three-, four-, and five-digit answers in most escape room scenarios.

But when you start getting into encryptions where a letter’s meaning can shift as the coded message evolves — like the one employed by a devious 10-year-old kid in a puzzly letter to Santa years ago — and I quickly find myself stymied.

It leaves me all the more impressed when I read about codebreaking efforts as ambitious as ENIGMA and as silly (and, yet, still quite impressive) as Futurama fans cracking the multiple alien codes in the show just from random snippets.

But codebreaking isn’t just about cleverness, pattern-recognition, and determination.

Sometimes, it’s about knowing where to look.

For instance, in Los Angeles, there have been secret messages being transmitted in plain sight for decades.

Just cast your eyes to the light atop the Capitol Records building in Los Angeles.

The building was designed to look like a stack of records on a turntable, complete with the spindle pointing skyward. It opened in 1956, and the president of Capitol Records at the time, Alan Livingston, wanted the light to send out a message in Morse code. On opening day, Leila Morse — the granddaughter of Samuel Morse, inventor of Morse code — turned the light on.

The secret message being broadcast? “Hollywood.”

The message blinked away for decades. But it wasn’t the only message the light atop Capitol Records would send over the years.

In 1992, to celebrate the fiftieth anniversary of Capitol Records, the code was changed to “Capitol 50” for the entire year. Then it went back to the traditional “Hollywood” code.

4f1dcfb619b03bea8cc82d43356f2977

A decade later, it was changed again. What was the message? A secret announcement that would excite millions of pop music fans…

“Katy Perry. Prism. October 22, 2013.”

But as far as anyone can tell, nobody noticed. This teaser announcement never made the local or national news.

And so far, there hasn’t been a secret message since. At least, not that anyone has noticed.

Still, best keep your eyes on that light. You never know if your favorite artist might send you a secret signal. And it sure beats looking for backwards messages in heavy metal songs.


Thanks for visiting PuzzleNation Blog today! Be sure to sign up for our newsletter to stay up-to-date on everything PuzzleNation!

You can also share your pictures with us on Instagram, friend us on Facebook, check us out on TwitterPinterest, and Tumblr, and explore the always-expanding library of PuzzleNation apps and games on our website!

Puzzle History: Codebreaking and the NSA, part 3

[Image courtesy of NSA’s official Twitter account.]

At the end of part 2 in our series, we left off during the early days of the NSA, as American cryptographers continued to labor under the shadow of the Black Friday change in Russian codes.

You may have noticed that part 2 got a little farther from puzzly topics than part 1, and there’s a reason for that. As the NSA evolved and grew, codebreaking was downplayed in favor of data acquisition. The reasons for this were twofold:

1. Context. You need to understand why given encrypted information is important in order to put it toward the best possible use. As Budiansky stated in part 1, “The top translators at Bletchley were intelligence officers first, who sifted myriad pieces to
assemble an insightful whole.”

2. Russian surveillance and bugging continued to grow more clever and sophisticated, pushing attention away from codebreaking. After all, what good is breaking codes or developing new ones if they can just steal unencrypted intel firsthand by monitoring
agents in the field?

Moving forward, the NSA would continue to pursue all manner of data mining, eventually leaving behind much of the codebreaking and analysis that originally formed the backbone of the organization. But that was in years to come. Cryptography was still a major player in NSA operations from the ’50s and onward.

[The progression of “secret” and “top secret” code words.
Image courtesy of NSA’s official Twitter account.]

In May 1956, NSA cryptanalytic veterans pushed a proposal titled “Recommendations for a Full-Scale Attack on the Russian High-Level Systems,” believing that specially designed computers from IBM could provide the key for cracking the impenetrable Russian cryptography wall. Some cryptographers believed that ever-increasing processor speeds would eventually outpace even sophisticated codes.

By 1960, the NSA had spent $100 million on computers and analytical tools.

The problem? The NSA was collecting so much information that their increasingly small team of cryptoanalysts couldn’t dream of processing even a tiny portion of it.

But the quest for data access would only grow more ambitious.

In the wake of Sputnik’s launch in October of 1957, US signals intelligence would go where no man had gone before. The satellite GRAB, launched alongside Transit II-A in June of 1960, was supposedly meant to study cosmic radiation. (GRAB stood for Galactic Radiation and Background.)

[Image courtesy of NSA’s official Twitter account.]

But it was actually intended to collect radar signals from two Soviet air-defense systems. This was the next step of ELINT, electronic intelligence work. (The younger brother of SIGINT.)

The NSA would later find a huge supporter in President Lyndon Johnson, as the president was heavily invested in SIGINT, ELINT, and any other INTs he could access. This did little to quell the intelligence-gathering rivalry growing between the CIA and NSA.

Of course, that’s not to say that the NSA ceased to do any worthwhile work in codebreaking. Far from it, actually.

During the Vietnam War, NSA analysts pored over North Vietnamese signals, trying to uncover how enemy pilots managed to scramble and respond so quickly to many of the US’s airstrikes conducted during Operation Rolling Thunder.

Careful analysis revealed an aberrant character (in Morse code) in messages that appeared in North Vietnamese transmissions before 90 percent of the Rolling Thunder airstrikes. By identifying when the enemy used that aberrant character, the analysts
were able to warn US pilots whether they were heading toward a prepared enemy or an unsuspecting one during a given sortie.

Other NSA teams worked to protect US communications by playing the role of an enemy analyst. They would try to break US message encryptions and see how much they could learn from intercepted US signals. Identifying flaws in their own procedures — as well as members of the military who were cutting corners when it came to secured communications — helped to make US communications more secure.

[Image courtesy of NSA.gov.]

In 1979, Jack Gurin, the NSA’s Chief of Language Research, wrote an article in the NSA’s in-house publication Cryptolog, entitled “Let’s Not Forget Our Cryptologic Mission.” He believed much of the work done at the agency, and many of the people
hired, had strayed from the organization’s core mission.

The continued push for data acquisition over codebreaking analysis in the NSA led to other organizations picking up the slack. The FBI used (and continues to use) codebreakers and forensic accountants when dealing with encrypted logs from criminal organizations covering up money laundering, embezzlement, and other illegal activities.

And groups outside the government also made impressive gains in the field of encryption, among them IBM’s Thomas J. Watson Research Center, the Center for International Security and Arms Control, and even graduate student programs at universities like MIT and Stanford.

For instance, cryptographer Whitfield Diffie developed the concept of the asymmetric cipher. Joichi Ito explains it well in Whiplash:

Unlike any previously known code, asymmetric ciphers do not require the sender and receiver to have the same key. Instead, the sender (Alice) gives her public key to Bob, and Bob uses it to encrypt a message to Alice. She decrypts it using her private key. It no longer matters if Eve (who’s eavesdropping on their conversation) also has Alice’s public key, because the only thing she’ll be able to do with it is encrypt a message that only Alice can read.

This would lead to a team at MIT developing RSA, a technique that implemented Diffie’s asymmetric cipher concept. (It’s worth noting that RSA encryption is still used to this day.)

[Image courtesy of Campus Safety Magazine.com.]

The last big sea change in encryption came when the government and military realized they no longer had a monopoly on codebreaking technology. Increased reliance and awareness of the importance of computer programming, greater access to computers with impressive processing power, and a groundswell of support for privacy from prying government eyes, led to dual arms races: encryption and acquisition.

And this brings us to the modern day. The revelations wrought by Edward Snowden’s leak of NSA information revealed the incredible depth of government data mining and acquistion, leading some pundits to claim that the NSA is “the only part of government that actually listens.”

Whatever your feelings on Snowden’s actions or government surveillance, there is no doubt that the National Security Agency has grown and changed a great deal since the days of cracking the ENIGMA code or working with the crew at Bletchley Park.

Where will American codebreaking go next? Who knows? Perhaps quantum computing will bring codes so complicated they’ll be impenetrable.

All I know is… it’s part of puzzle history.


I hope you enjoyed this multi-part series on the history of 20th-century codebreaking in America. If you’d like to learn more, you can check out some of the valuable sources I consulted while working on these posts:

Code Warriors: NSA’s Codebreakers and the Secret Intelligence War Against the Soviet Union by Stephen Budiansky

Whiplash: How to Survive Our Faster Future by Joichi Ito

The Secret Lives of Codebreakers by Sinclair McKay


Thanks for visiting PuzzleNation Blog today! Be sure to sign up for our newsletter to stay up-to-date on everything PuzzleNation!

You can also share your pictures with us on Instagram, friend us on Facebook, check us out on TwitterPinterest, and Tumblr, and explore the always-expanding library of PuzzleNation apps and games on our website!